Nieuwe imec chip legt basis voor energie-efficiënte, zelfdenkende radarsystemen (voor drones en auto’s)

0

Imec presenteert de eerste chip voor die radarsignalen verwerkt door gebruik te maken van een zogenaamd ‘spiking recurrent neuraal netwerk’. Spiking neurale netwerken zijn geënt op principes uit de neurobiologie: ze bootsen de manier na waarop neuronen werken. Daardoor verbruikt de nieuwe chip tot 100 keer minder energie dan de oplossingen die vandaag gebruikt worden, en ligt zijn reactiesnelheid 10 maal hoger. Hoewel de chip kan worden ingezet voor de verwerking van tal van signalen (spraak, sonar, lidar, enz.), kijken de onderzoekers vooral in de richting van een energie-efficiënt en intelligent (zelfdenkend) radarsysteem dat drones toelaat heel snel te reageren op naderende obstakels.

De digitale SNN chip bootsts de manier na waarop biologische neuronen sensor datastromen verwerken.
Foto Imec

Toepassingen die een beroep doen op artificiële intelligentie, zoals radargestuurde rijhulpsystemen in auto’s die helpen om botsingen te vermijden, maken vaak gebruik van artificiële neurale netwerken. Hoewel die netwerken al in heel wat domeinen hun waarde hebben bewezen, hebben ze echter ook hun beperkingen. Zo verbruiken ze bijvoorbeeld te veel energie om te kunnen worden geïntegreerd in toestellen met een beperkte batterijcapaciteit. Bovendien is de huidige generatie artificiële neurale netwerken zo opgebouwd dat data een tijdrovend traject moeten afleggen – van sensor tot algoritme – voordat er een beslissing kan worden genomen. Spiking neurale netwerken doen wat dat betreft een heel stuk beter.

Ilja Ocket

“De digitale chip die we vandaag voorstellen, is de eerste ter wereld die radarsignalen verwerkt door gebruik te maken van een spiking recurrent neuraal netwerk”, zegt Ilja Ocket, program manager neuromorphic sensing bij imec. “Dankzij de ontwikkeling van spiking neurale netwerken breekt als het ware een nieuw AI-tijdperk aan. Ze gaan op een spaarzame manier om met de beschikbare energie en zijn een pak sneller dan de huidige neurale netwerken. Bovendien maken we gebruik van feedback loops – waardoor ons netwerk tijdssequenties kan onthouden en informatie die het eerder is tegengekomen, kan gebruiken om nieuwe beslissingen te nemen. Deze nieuwe chip betekent dan ook een grote sprong voorwaarts in de ontwikkeling van zelflerende naar echt zelfdenkende systemen.”

Imec’s nieuwe chip werd in eerste instantie ontworpen om de herkenning van spraakcommando’s en de classificatie van ECG-signalen te ondersteunen op IoT en draagbare apparaten met een beperkte batterijcapaciteit. Dankzij zijn generieke architectuur, gebaseerd op een volledig nieuw én digitaal hardware-ontwerp, kan de chip echter makkelijk worden aangepast om ook andere data te verwerken (zoals sonar-, radar- en lidargegevens).

Kathleen Philips

Vlieg- en rijhulpsystemen voor drones en auto’s – zoals radartoepassingen om botsingen te vermijden – moeten snel een inschatting kunnen maken van hun omgeving zodat ze tijdig kunnen inspelen op naderende objecten. Hoewel het hier gaat om erg complexe berekeningen kunnen deze systemen slechts een beroep doen op een beperkte batterijcapaciteit.

“Een eerste praktische toepassing voor onze nieuwe chip is dan ook de implementatie ervan in een energie-efficiënt, radargestuurd vlieghulpsysteem voor drones dat nog sneller – én nauwkeuriger – een onderscheid kan maken tussen obstakels. Op die manier kunnen drones in een fractie van een seconde reageren op potentieel gevaarlijke situaties”, zegt Ilja Ocket. bij imec. “Eén van de concrete scenario’s waarmee we aan de slag gaan, bestaat uit autonome drones die op basis van hun camera- en radarsensorsystemen moeten navigeren in een magazijn om er ingewikkelde taken uit te voeren. Ondertussen moeten ze uiteraard op een veilige afstand blijven van muren en rekken. Dat zijn toepassingen waarvoor onze nieuwe chip uitermate geschikt is. Maar eigenlijk kan de technologie ook in tal van andere domeinen worden gebruikt – van roboticatoepassingen tot de ontwikkeling van oplossingen die onze gezondheid monitoren.”

“Voor dit project hebben we onderzoekers van over heel imec samengebracht. Dankzij het multidisciplinaire karakter van ons onderzoekscentrum hebben we immers een uitgebreide expertise in tal van onderwerpen: van de ontwikkeling van algoritmes geïnspireerd op de neurobiologie en het ontwerpen van energie-efficiënte digitale chips tot het creëren van complexe geheugenstructuren die de manier nabootsen waarop onze synapsen werken. Het is op het kruispunt van al die domeinen dat imec echt het verschil maakt”, besluit Kathleen Philips, programmadirectrice IoT cognitive sensing bij imec.

Share.

Reageer

Deze site gebruikt Akismet om spam te verminderen. Bekijk hoe je reactie-gegevens worden verwerkt.

Verified by ExactMetrics